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Abstract

Wheezing is one of the most prominent symptoms for pulmonary attack. Hence, wheezing
detection has attracted a lot of attention in recent years. However, there is a dearth of a reliable
method that can automatically detect wheezing events during each respiration phase in presence
of several concurrent sounds such as cough, throat clearing, and nasal breathing. In this paper, we
develop a model called WheezeD which, to the best of our knowledge, represents the first step
towards developing a computational model for respiration phased based wheeze detection. Wheeze
2D has two components, first, we develop an algorithm to detect respiration phase from audio data.
We, then transform the audio into 2-D spectro-temporal image and develop a convolutional neural
network (CNN) based wheeze detection model. We evaluate the model performance and compare
them to conventional approaches. Experiments on a public dataset show that our model can
identify wheezing event with an accuracy of 82.508%, specificity of 83.69%, and sensitivity of
96.24%, which is over 10% improvement in performance compared to the best accuracy reported
in the literature by using traditional machine learning models on the same dataset. Moreover, we
discuss how WheezeD may be used towards assessment and computation of patient severity.

1 Introduction

Asthma could be defined more as a syndrome characterized by several different phenotypes
Therefore, one of the possible definitions describing the characteristics of the disease and unifying
more different definitions could define asthma as chronic inflammatory disease characterized by
acute variable onset of symptoms (coughing, air deficiency, chest tightening) with
bronchoconstriction (clinical definition) reversible and passes spontaneously or under the impact
of therapy (pharmacological definition), followed by bronchial hyperactivity on different
stimulants (functional definition) and the inflammation of different stage, duration and difficulty
(biological definition). Cough variant asthma (CVA) is defined as a phenotype of asthma, which
characterized by cough as the sole symptom and airway hyperreactivity (AHR). Corrao and
colleagues first defined “cough variant asthma” as AHR, chronic cough and absence of wheezing
. The authors agree that CVA and classic asthma have the same pathophysiological and
immunological mechanisms, so CVA is considered a precursor of classic asthma A 5-year-old boy
presented to the clinic because of prolonged dry coughing with no history of wheezing. Because
boy could not do spirometry, a forced oscillation technique was made. The total respiratory
resistance was decreased by —20.4% after beta-2-agonist inhalation. At the first visit, 2-week
therapy of inhaled beta-2-agonist was started. This treatment was clearly effective against his
cough. The CVA was diagnosed, and his treatment with leukotriene receptor antagonist
(Montelukast) and LABA (tulobuterol patch) was started for next 8 weeks. Eight months later, boy


mailto:tripathi.abhishekpati@gmail.com
mailto:umaecestaff@gmail.com
mailto:pvlnphani0454@gmail.com

has the same symptoms. The same treatment was restarting. Three years later, boy has another
episode of a dry cough with no complaints of wheezing. A physician confirmed a wheeze during
expiration by auscultation. The treatment with inhaled steroid (Fluticasone), LABA (Salmeterol)
and leukotriene receptor antagonist (Montelukast) was started. Over time, after boy developed
recurrent wheezing, the diagnosis of asthma was set. A 64-year-old female presented to the clinic
as a self-referral complaining of a persistent cough.” She said that the symptoms last for almost
17 years. The patient had diagnosed seasonal rhinosinusitis with positive skin prick test. Previous
evaluations were all unremarkable. She underwent a methacholine challenge test. Spirometry
showed increase in FEV1 with a 13% change from baseline. The patient was diagnosed with CVA
and therapy with a combination of medium dose inhaled steroid and long-acting beta-2-agonist
(Mometasone/Formoterol) was started. 32-year-old women presented with an intermittent non-
productive hacking cough that had lasted several days.” Her medical history was unremarkable,
and previous evaluations were normal. Results of a methacholine challenge test showed severe
airway hyperreactivity. The patient was diagnosed with CVA, and bronchodilator with ICS
treatment was started. The prevalence of CVA is unknown, and from these cases it can be noticed
that patients with chronic cough, as the only symptom, remain unrecognized as asthma for a long-
time period. The isolated cough is less common than other clinical manifestations of classic
asthma. Diagnosis of CVA may prove to be a challenge for the physicians. Therefore, evaluation
results of patients with CVA are usually normal (spirometry, skin prick test, chest radiography,
blood test). Previous clinical history is also normal in these patients. Clinical feature of CVA is a
good response to bronchodilator and ICS therapy. Studies have shown that the ICS therapy in CVA
patients prevents the development of classic asthma. Namely, it has been noticed that an average
of 30% of patients with CVA without treatment develop classic asthma with wheezing. A smaller
number, about 10% of patients with CVA and with adequate therapy (bronchodilator, ICS or
Montelukast) develop classic asthma. A good response of chronic cough to the therapy with ICS
cannot be used to distinguish other cough present diseases (atopic cough, non-asthmatic
eosinophilic bronchitis) from CVA. It should be emphasized that in patients with chronic cough,
a diagnostic evaluation for asthma should be performed.

2.Literature survey

It is a chronic inflammatory disease of the respiratory airway and can be hyper-responsiveness to
a variety of stimuli [2]. The asthmatic patient suffers attacks such as coughing, dyspnea, and the
main manifestation is wheezing [3]. Sounds generated during breathing can be a good source of
information on lung’s health [4]. Any characteristic changes of the normal lung sounds can imply
a diseased condition that probably is invading the lung. Each type of disease is different from each
other and the variation can be ascertained from sound characteristic, pitch, amplitude, frequency,
duration, etc. [5]. With regard to asthma, symptoms originating from the wall oscillations of
narrowed airways at critical flow rates causes wheeze to occur [3]. Wheeze is one of the
adventitious sounds present in lung that is clinically defined as abnormal. The presence of wheeze,
its location, duration and its relation to the respiratory cycle can be very useful to assist the
physician as it has become a crucial practice in diagnosing and managing a number of pulmonary
pathologies such as chronic obstructive pulmonary disease (COPD), bronchiolitis and commonly
asthma [6]. Wheezes are continuous adventitious sounds that are superimposed on the normal
breath sounds. According to the American Thoracic Society (ATS), the word “continuous” can be
defined as the duration of the wheeze that is longer than 250 ms. The ATS also defines wheezes
as high-pitched continuous sounds with a dominant frequency of 400 Hz or more. Wheezes can be



detected and classified based on the frequency characteristics of its sinusoidal waves that justifies
the musical character of the wheeze [7]. Conventionally, stethoscope is used to diagnose and
monitor wheezes in asthmatic patients. Although it is well known that auscultation with
stethoscope is reliable, fast and non-invasive, continuous monitoring of the respiration condition
is impossible [8, 9]. Due to increasing number of asthmatic patients at present, there is a growing
demand for automatic monitoring of the wheeze to assist the physicians in diagnosing and
monitoring the patient. For asthmatic patients, continuous and automatic monitoring is essential
as the daily symptoms can provide crucial information to the medical diagnosis [8]. Therefore, the
electronic stethoscope, which is capable of recording and storing lung sounds, is available for
many years now. This stethoscope can not only store the data obtained, but such data can be
retrieved in future to aid in the interpretation of disease by medical personnel [10]. However, the
problem seems to amplify as different physicians interpret the lung sounds differently. To
overcome these problems, computerized approach has been developed over the past three decades
for automated wheeze detection [11]. It is a bit time-consuming, but low in cost and reliable. Many
researchers were involved in developing and improving these automated systems and many have
succeeded in their research. A survey of literature shows that the main methodologies can roughly
be classified into two categories: Fourier peaks detection and spectrogram image analysis.
Exisiting Approach The Short-Time Fourier Transform (STFT) (or short-term Fourier transform)
is a powerful general-purpose tool for audio signal processing [7,9,8]. It defines a particularly
useful class of time-frequency distributions [4] which specify complex amplitude versus time and
frequency for any signal. We are primarily concerned here with tuning the STFT parameters for
the following applications: Approximating the time-frequency analysis performed by the ear for
purposes of spectral display. Measuring model parameters in a short-time spectrum. In the first
case, applications of audio spectral display go beyond merely looking at the spectrum. They also
provide a basis for audio signal processing tasks intended to imitate human perception, such as
auditory scene recognition [26] or automatic transcription of music [15]. Examples of the second
case include estimating the decay-time-versus-frequency for vibrating strings [2,8] and body
resonances [1,19], or measuring as precisely as possible the fundamental frequency of a periodic
signal [1,6] based on tracking its many harmonics in the STFT [64]. An interesting example for
which cases 1 and 2 normally coincide is pitch detection (case 1) and fundamental frequency
estimation (case 2). Here, ~“fundamental frequency" is defined as the lowest frequency present in
a series of harmonic overtones, while ““pitch" is defined as the perceived fundamental frequency;
perceived pitch can be measured, for example, by comparing to a harmonic reference tone such as
a sawtooth waveform. (Thus, by definition, the pitch of a sawtooth waveform is its fundamental
frequency.) When harmonics are stretched so that they become slightly in harmonic, pitch
perception corresponds to a (possibly non-existent) compromise fundamental frequency, the
harmonics of which “"best fit" the most audible overtones in some sense. The topic of " pitch
detection" in the signal processing literature is often really about fundamental frequency
estimation, and this distinction is lost. This is not a problem for strictly periodic signals.

Mathematical Definition of the STFT
The usual mathematical definition of the STFT is [9]

HIDDEN MAKOV MODEL
The theoretical foundation of HMM is established by Baumet al., which is promoted by Rabiner
and others, which has strong modeling ability to the time domain signal so that it has become a



research hotspot [16, 25]. It has been successfully used in speech recognition, behavior
recognition, and character recognition and fault diagnosis. HMM is a powerful statistical tool on
describing discrete time data samples, it is a double random process, one of which is the Markov
chain, which is a basic stochastic process to describe the transfer of state. Another stochastic
process describes the statistical correspondence between States and observations. Because the state
cannot be seen directly, HMM is a random process to perceive the existence of the state and its
characteristics. A hidden Markov model can be defined by:

{S} —a set of state including an initial observation state Sm and a hidden state Sy;
A —the transition probability matrix, A = ajj,where ajj is the transition probability of taking the
transition from state i to j;

B —the output probability matrix, B = bj(Ox) for discrete hidden Markov model or B = bj(x) a
continuous hidden Markov model, where Ok stands for a discrete observation symbol, and x stands
for continuous observations of k—dimensional random vectors.

If the initial state distribution = = {ni}, the complete parameter set of the hidden Markov model
can be expressed compactly as A = {N, M, A, B, n}.

Model initialization.

The initialization of hidden Markov model is to confirm the original value of hidden Markov model
a set of five parameters L = (N, M, A, B, ©t). The sequence of driving style and braking behavior
constitute a Markov chain. The number of hidden states (driving style) is 3, which are aggressive,
moderate and mild; the number of observation status (braking behavior) is 2, which are general
breaking and emergency breaking. And it is necessary to consider two factors to observe the
number of sequences: the recognition accuracy and the recognition duration of the algorithm. If
the sequence is too long, then the matrix dimension is too high, recognition duration is reduced
with amount of calculation; if the sequence is too short, it is difficult to reflect the relationship
between each node of the Markov chain, which would result in lower recognition rate. According
to set the sequence of different length, it can be found that when the sequence length is 8, the fitting
effect of the model is the best [24]. For the observation sequence length T, which should be
considered whether it can describe the braking characteristics sufficiently, T is fixed as 8 in the
experiment. Eight consecutive braking characteristics constitute an observation sequence.
Traditional incident clearance time studies rely on statistical models with rigorous assumptions
[26]. It is generally believed that the initial parameter selection has little effect, which can be
randomly or evenly selected [27]. The initial state probability distribution vector can be selected
as: mo = (1, 0, ---, 0)". the initial probability distribution initialization of matrix A is uniform
distribution, the scale of matrix A is 3 x 3, Ao = [aij]3x3, @;j = 1/3. The initial probability distribution
of mixed matrix B is confirmed by different braking characteristics prior probability. According
to the selection of the number of hidden states N and the number of observations M, the scale of
matrix B is 3 x 2, and the initial probability distribution of matrix B is uniform distribution, Bo =
[bijlax2, bij = 1/3. After stipulation of the initial value of hidden Markov model parameters, the
initial model of the hidden Markov model Lo can be obtained.
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4.Proposing Scheme

output layer

input layer
hidden layer 1 hidden layer 2
Figure 1: An example of the traditional neural network

Neural networks are the techniques of machine learning. They are just like the neural networks in
biology. There are many neurons and many connections between neurons. Figure 1 is an example
of the neural network. The white circles represent neurons and the arrows represent the connections
between neurons. Note that the connections are directed, therefore we use arrows to represent it.
In this section, we will introduce what the neural network is.

First, we need to know what the neuron is. In biology, neurons have inputs, thresholds, and output.
If the input voltage is larger than threshold, the neuron will be activated and a signal is transmitted
to output. Note that the neuron might have many inputs but there is only one output signal. The
operation model of the neuron in machine learning is very like the one in biology. They also have
the inputs and outputs. Despite the neuron’s output is connected to many neurons in Figure 1, the
value of the outputs are the same. Of course, there are some differences of them. Instead of the
threshold, the “neuron” in machine learning use a function to transfer the inputs to the output.
There are many choices of the activation function. We often choose it as the sigmoid function o(x).

1
1+e*

1)

o(x) =

The sigmoid function is very similar to the step function, which acts similar to thresholding. When
x is a large positive number, the output of the sigmoid function is near to 1. When x is much
smaller than 0, the output is near to zero. We can see these factst in Figure 2. Another good property
is that the sigmoid function is continuous and differentiable. So we can apply some mathematics
on it.
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Figure 2: The sigmoid function [7]
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Another difference is the weight. The weights describe that how much each input affects the
neuron. That is, we will not just put every inputs into the activation function. The value of
activation function’s input is the linear combination of the inputs. The mathematical representation
is as follows:

(WX +W, X, +---+ Wy Xy)  (2)

where N is the amount of the inputs, w, are weights of x., and o( ) is the activation function.

However, there is a problem of it! We reduce the amount of inputs to 1 and change the weight to
observe how weights influence on the output. The result is shown in Error! Reference source not
found.(a). One can see that O can be viewed as the threshold to determine whether the output is
near to 0 nor near to 1. However, how do we modify the model if we want to change the threshold
to a value other than 0? In this case, we add a bias 0 to achieve that so that we can shift the sigmoid
function. The result of the sigmoid function with bias is shown in Error! Reference source not
found.(b). So the new relation is revised as follows:

0'(9+W1X1+W2X2+“'+WNXN) (3)
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Figure 3: A simple example of the pooling layer
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Figure 4: Wheeze signal from database name normal (5).wave
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Figure 5: Wheeze signal from database name normal (15).wave

Abnormal Signals
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Figure 6: Wheeze signal from database name wheeze (35).wave
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Figure 8: Spectrum analysis from STFT for both normal and abnormal signals

TABLE 1: Accuracy, Execution time, Sensitivity and Specificity for HMM classifiers and
CNN classifiers

HMM CNN
TESTING EXECUTION TIME | 2.59sec 1.52sec
SENSITIVITY 59.83% 82.508%
SPECIFICITY 62.48% 83.69%
ACCURACY 64.5% 96.24%

CONCLUSION FUTURE SCOPE

Following are the few limitations which may lead to interesting research opportunities. First, we
use limited dataset of wheezing sounds in this work, which in turn restricts the model to two con-
volutional layers.

In future, large amount of data can be collected in order to build deeper and more robust networks.
Moreover, we did not explore LSTM based model, which we believe may improve the detection
taking into consideration the temporal signature of wheeze in the acoustic data. Second, the
detection method will help us collect long term longitudinal wheeze data from patients, which may
be useful in assessing triggers of asthma or COPD ex-acerbation in the wild. Our hope is that,
respiratory phase based wheezing detection, like WheezeD can be utilized towards assess-ment of
severity.

Copyright @ 2022 Author Page | 8



For instance, severity may be associated with the wheezing duration, rate and diurnal pattern (for
e.g., wheezing at night time) [22]. Moreover, severity can be determined by the greater level of
obstruction of upper airways, and wheezing during inspiration is a defined surrogate for that [18].
Hence wheezing during inspiration phase may be assessed to be more severe than during
expiration. Interestingly, we note that WheezeD presents the fundamental attributes required
(respiration phase detection and wheezing detection with much better performance than existing
works) to assess wheezing severity.
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