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Abstract: The detection of gas emission levels is a 

crucial problem for ecology and human health. 

Hyperspectral image analysis offers many advantages 

over traditional gas detection systems with its 

detection capability from safe distances. Observing 

that the existing hyperspectral gas detection methods 

in the thermal range neglect the fact that the captured 

radiance in the longwave infrared (LWIR) spectrum 

is better modeled as a mixture of the radiance of 

background and target gases, we propose a deep 

learningbased hyperspectral gas detection method in 

this article, which combines unmixing and 

classification. The proposed method first converts the 

radiance data to luminance-temperature data. Then, a 

3-D convolutional neural network (CNN) and 

autoencoder-based network, which is specially 

designed for unmixing, is applied to the resulting data 

to acquire abundances and endmembers for each 

pixel. Finally, the detection is achieved by a three-

layer fully connected network to detect the target 

gases at each pixel based on the extracted endmember 

spectra and abundance values. The superior 

performance of the proposed method with respect to 

the conventional hyperspectral gas detection methods 

using spectral angle mapper and adaptive cosine 

estimator is verified with LWIR hyperspectral images 

including methane and sulfur dioxide gases. In 

addition, the ablation study with respect to different 

combinations of the proposed structure including 

direct classification and unmixing methods has 

revealed the contribution of the proposed system And 

also it include an ensemble  model named 

CNN+BiGRU which got 100% accuracy  for 

enhanced Autoencoder-Based Gas Detection in 

Hyperspectral Images. A user-friendly Flask 

framework with SQLite integration facilitates signup 

and signin for user testing, ensuring practical 

usability in deep learning  applications. 

Index terms - Autoencoders, convolutional neural 

networks (CNNs), gas detection, hyperspectral 

unmixing. 

1. INTRODUCTION 

Imaging spectroscopy has been used by physicists 

and chemists for more than three decades to identify 

materials and their compositions. The concept of 

hyperspectral remote sensing started in the mid-80s 

and has been widely used by geologists for mapping 

minerals to this day [1]. The detectability of the 

material is determined depending on the spectral 

range of the spectrometer, its spectral resolution, the 
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abundance of the material, and the strength of the 

absorption properties in the measured wavelength 

region [2]. The gas leaks in particular in developed 

countries in the last decade were one of the crucial 

environmental problems. Some gases are harmful to 

the environment and contribute to global warming. 

They present both short-term risks such as explosions 

and long-term risks such as cancer to workers or 

people living close to the leaking facility. To 

minimize these effects, environmental authorities 

need to monitor chemical and industrial plants to 

control gas emission levels. Infrared remote sensing 

technology, which offers many advantages over 

traditional gas detection systems, is one of the 

proposed solutions for this aim as such solutions 

allow monitoring the scene from a safe distance [3].  

To this end, forward-looking infrared hyperspectral 

cameras are placed in potentially dangerous areas for 

gas detection from safe distances. These cameras, 

which are designed to capture images at different 

wavelengths, can operate in two different regions, 

which involve medium-wave infrared (3–5 µm) and 

long-wave infrared (7–14 µm) bands. Until now, 

these cameras have been utilized for the detection of 

different gases such as carbon dioxide, propane, 

methane, sulfur, butane, freon, ammonia, 

difluoroethane, diethyl ether, sulfur hexafluoride, and 

phosgene [4], [5], [6], [7]. The detection of gases in 

such studies is mainly achieved by utilizing 

conventional statistical detection methods along with 

the basic signal processing operations such as data 

transformation, background suppression, dimension 

reduction, linear regression, and matched filtering 

[4], [6], [7], [8], [9].  

As one of the pioneer studies for gas detection, 

Pogorzala [10] proposed a pixel-based method using 

linear regression in synthetic images for the detection 

of ammonia (NH3) and Freon114. Later, Vallières et 

al. [4] presented a method that first converts the 

hyperspectral radiance data to luminance temperature 

data. After performing background removal on the 

temperature data, the resulting cube undergoes 

spectral matched filtering [11] to distinguish gas-

containing pixels. Finally, the detection is carried out 

by applying thresholding to the resulting scores after 

matched filtering.  

In another study, Spisz et al. [12] first applied 

principal component analysis for background 

removal, and then utilized matched filter and spectral 

angle mapper to detect various chemical compounds. 

A different study using hyperspectral imaging [13] 

focused on the automatic detection of waste gases. 

The proposed method first filters the possible areas in 

the scene by means of detecting critical wavelengths 

and using the correlation coefficient metrics to select 

pixels with high concentration. The target gases are 

then detected using a spectral matched filter 

algorithm on the selected pixels. 

2. LITERATURE SURVEY 

Imaging spectroscopy is becoming more and more 

popular as a novel method of Earth remote sensing, 

according to the paper [1] "Imaging Spectroscopy 

and the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS)". Measurement of the solar 

reflected spectrum at 10-nm intervals from 400 to 

2500 nm was first accomplished by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS). 

AVIRIS continues to be unique in terms of its signal-

to-noise ratio and calibration accuracy. Recent years 
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have seen a significant evolution of the AVIRIS 

system as well as advances in science research and 

applications. In terms of the sensor, calibration, data 

system, and flight operation, the original design and 

improved features of the AVIRIS system are 

described. This AVIRIS feature update sets the scene 

for scientific studies and applications that make use 

of AVIRIS data collected over the last few years 

[13,14]. A review of recent scientific research and 

applications is conducted, covering topics such as 

atmospheric correction, ecosystem and vegetation, 

geology and soils, inland and coastal waters, the 

atmosphere, snow and ice hydrology, burning of 

biomass, environmental hazards, commercial 

applications, spectral algorithms, human 

infrastructure, and spectral modeling. 

Multispectral imagery has been used as the data 

source for water and land observational remote 

sensing from aircraft and satellite systems since the 

early 1960s, according to the paper "A review of 

hyperspectral remote sensing and its application in 

vegetation and water resource studies [2]". Several 

hundred spectral bands have been collected thanks to 

developments in sensor technology over the last 20 

years. This kind of imagery is often called 

hyperspectral imagery. The use of hyperspectral 

imagery in water resource studies, specifically the 

categorization and mapping of land uses and 

vegetation, is the main topic of this review, which 

also discusses the distinctions between multispectral 

and hyperspectral data as well as spatial and spectral 

resolutions. 

Standoff detection is covered in the paper [4] 

"Algorithms for Chemical detection, identification 

and quantification for thermal hyperspectral 

imagers." Identification and quantification of 

chemicals in the gaseous state are essential 

requirements in a number of application domains. 

These applications' demands on the sensors include 

high sensitivity, minimal false alarms, and real-time 

operation—all in a small, sturdy package that can be 

used in the field. Such chemical sensors have been 

implemented using the thermal infrared portion of the 

electromagnetic spectrum, either with spectrometers 

(which have no or moderate imaging capability) or 

with imagers (which have moderate spectral 

capability). Chemical sensors with unmatched 

performance in the spectral, spatial, and temporal 

domains have only recently been possible to design 

thanks to the development of large format, high-

speed infrared imaging arrays. Analytical studies 

demonstrate that the combination of spatial and 

spectral information holds great potential for 

enhancing the effectiveness of chemical agent 

identification, quantification, and passive detection as 

it stands today. The detection, identification, and 

quantification algorithms created for hyperspectral 

imagers working in the thermal infrared are presented 

in this paper. The efficacy of these algorithms is 

demonstrated through the use of gaseous releases 

datacubes obtained in the field with the Telops 

FIRST imaging spectrometer. 

Fourier-transform infrared (FTIR) spectroscopy is a 

potent technique for the passive remote detection and 

identification of vapor emanations and surface 

contaminations. Recent results using MoDDIFS are 

discussed in the paper [5] "Hyperspectral gas and 

polarization sensing in the LWIR: Recent results with 

MoDDIFS." Imaging FTIR can be used remotely to 

monitor areas suspected of being used to fabricate 

illegal products in the context of defense and 
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security. To meet this remote sensing need, DRDC 

Valcartier recently started working on the 

development and field testing of the innovative 

imaging Fourier transform infrared sensor, called 

MoDDIFS (Multi-option Differential Detection and 

Imaging Fourier Spectrometer). This paper proposes 

a system that combines the high spatial resolution 

offered by the hyperspectral imaging approach with 

the efficient clutter suppression of the differential 

detection approach. Two configuration options are 

available for the MoDDIFS sensor: one for 

polarization sensing of surface contamination and the 

other for remote gas detection. The results of using 

MoDDIFS for the passive standoff detection of gases 

and liquid contaminants are reviewed in this paper. 

Difluoroethane, diethyl ether (gases), and SF96 

(liquid) are used in hyperspectral measurements to 

develop, test, and validate algorithms for GLRT-type 

detection. The GLRT detection attributes are used to 

present and discuss the detection results. 

Interest in the detection, identification, and 

quantification of gaseous effluents has increased for 

both government and commercial applications, 

according to the paper [6] "Gaseous plume detection 

in hyper spectral images: A comparison of methods". 

But the issues related to hard-target detection in the 

reflective spectral regime are very dissimilar from the 

problem of gas detection. Specifically, upon viewing 

the mixed background pixel signature from the 

ground, one can observe gas signatures in either 

emission or absorption, which are dependent on both 

temperature and concentration. Thermal 

hyperspectral synthetic imagery is used in this work 

to apply conventional hard-target detection schemes. 

Principal Components Analysis, Projection Pursuit, 

and a Spectral Matched Filter are the techniques that 

are examined here. The applicability of these 

methods to the problem of gas detection will be 

compared in a quantitative and qualitative manner. A 

precise quantitative evaluation of the algorithmic 

performance can be obtained by comparing the 

synthetic data outputs with truth outputs. It is 

demonstrated that Principle Components and 

Projection Pursuit perform comparably and 

outperform the Spectral Matched Filter. Furthermore, 

it can be seen that Principal Components and 

Projection Pursuit can distinguish between areas of 

the plume that absorb light and those that emit it. 

3. METHODOLOGY 

i) Proposed Work: 

The proposed system for gas detection in 

hyperspectral images combines 3D convolution and 

autoencoder-based unmixing with classification, 

demonstrating improved performance compared to 

conventional methods, and it can be adapted for 

various gases using consistent system parameters. 

And this project include an ensemble  model named 

CNN+BiGRU which got 100% accuracy  for 

enhanced Autoencoder-Based Gas Detection in 

Hyperspectral Images [4]. A user-friendly Flask 

framework with SQLite integration facilitates signup 

and signin for user testing, ensuring practical 

usability in deep learning  applications. 

ii) System Architecture: 

A 3D-CNN is a type of neural network architecture 

designed to work with three-dimensional data, such 

as volumetric data or in this case, hyperspectral 

images. It is well-suited for tasks involving spatial 

and spectral information, making it applicable for the 
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analysis of hyperspectral data. An autoencoder is a 

type of neural network architecture used for 

dimensionality reduction and feature extraction. It 

consists of an encoder that compresses the input data 

into a lower-dimensional representation (latent space) 

and a decoder that reconstructs the original input 

from this representation. [20,21,22] The 3D-CNN is 

deployed in conjunction with an autoencoder to 

analyze hyperspectral data. The autoencoder helps in 

reducing the dimensionality of the hyperspectral data, 

capturing essential features while discarding 

redundant information. This is crucial for efficient 

processing of the complex hyperspectral images. 

The project significantly enhances its capabilities 

through the incorporation of an ensemble model, 

CNN+BiGRU, which combines Convolutional 

Neural Network (CNN) and Bidirectional Gated 

Recurrent Unit (BiGRU) architectures [20]. 

Impressively, this ensemble model achieves a perfect 

100% accuracy, underscoring its effectiveness in 

ensuring reliable and precise gas detection in 

hyperspectral images. To enhance user interaction 

and practical usability, the project integrates a user-

friendly Flask framework, a lightweight web 

framework for Python. This framework streamlines 

user processes, including signup and signin, while the 

integration of SQLite, a relational database 

management system, efficiently manages user data. 

The user-friendly interface, coupled with SQLite 

integration, not only facilitates user testing but also 

ensures practical usability across a spectrum of deep 

learning applications, making the system versatile 

and accessible for diverse purposes. 

 

Fig 1 Proposed Architecture 

1. Hyperspectral Data: The input data for this 

project consists of hyperspectral images, where each 

pixel in the image has a spectral signature, typically 

represented as a vector of values at various 

wavelengths.  

2. Luminance Temperature Conversion: Before 

processing, the hyperspectral data may undergo 

preprocessing, such as luminance temperature 

conversion, to enhance specific spectral features or to 

make the data more suitable for gas detection.  

3. 3D Convolutional Neural Network (3D-

CNN):  

• 33P-3321 (3D Convolution, ReLU): The 

hyperspectral data is processed by a 3D-CNN. The 

initial layers likely include 3D convolutions with a 

kernel size of 3x3xP, where P is the number of 

spectral bands. This operation is followed by a 

Rectified Linear Unit (ReLU) activation function.  

• 2211 (3D Convolution, ReLU): Subsequent 

layers involve another 3D convolution operation with 

a 2x2x11 kernel size and ReLU activation.  
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• 117 (2D Convolution, ReLU): The final 3D 

convolution operation uses a 1x1x7 kernel size, 

which might essentially reduce the spectral 

dimension. ReLU activation is applied here as well.  

4. Flatten Layer: After the 3D-CNN layers, the 

data is flattened to convert it into a vector. This step 

is necessary before feeding it into the autoencoder.  

5. Autoencoder (Encoder-Decoder): • Encoder: 

The flattened data is processed through an 

autoencoder. The encoder part reduces the 

dimensionality of the data and extracts relevant 

features. In this gas detection context, the encoder 

output is the abundance values, which represent the 

presence and concentration of gases.  

• Normalization Layer Weights as 

Endmembers: The weights of the normalization layer 

in the autoencoder likely correspond to the 

endmembers, which are the pure spectral signatures 

of gases. These endmembers are important for 

identifying and quantifying the gases in the 

hyperspectral data. 

 • Decoder: The decoder part of the 

autoencoder attempts to reconstruct the original 

hyperspectral data from the encoder's output. This 

part may not be needed for gas detection but can be 

used for denoising or for other purposes. The entire 

system combines a 3D-CNN [4] for initial feature 

extraction and a subsequent autoencoder to estimate 

the abundance values of gases. The normalization 

layer's weights serve as the endmembers, allowing 

the system to identify and analyze gases within 

hyperspectral images. 

iii) Dataset collection: 

In this phase, the project examines and familiarizes 

itself with the hyperspectral spectrum images dataset. 

This includes understanding the structure of the data, 

the format of the hyperspectral images, and the 

available labels or gas emission information. 

Exploratory data analysis (EDA) may also be 

conducted to gain insights into the dataset. 

Hyperspectral images are obtained by imaging of 

airborne or satellite sensors on a target area, which 

contains information of objects in tens to hundreds of 

consecutive and segmented bands from visible light 

to the infrared spectral region. 

 

Fig 2 Dataset  

iv) Data Processing: 

Data Preprocessing -Data preprocessing is a crucial 

step where the raw data is cleaned, transformed, and 

made ready for model training. This may involve 

tasks like handling missing values, normalizing data, 

and ensuring data quality. For hyperspectral data, 

preprocessing might include noise reduction and 

spectral signature extraction.  

Splitting Dataset into Train and Test - To evaluate the 

model's performance, the dataset is typically divided 

into two parts: a training set and a testing set. The 

training set is used to train the machine learning or 

deep learning models, while the testing set is used to 

assess their accuracy and generalization to new, 

unseen data.  
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v) Model Building: 

Building the Model -This module focuses on the 

construction of the gas detection model. In this 

project, the model is based on a 3D Convolutional 

Neural Network (3D-CNN) with an autoencoder 

architecture. The model's architecture is designed and 

defined, specifying the layers, activation functions, 

and other parameters that govern its behavior.   

Training the Model - With the model architecture in 

place, the project proceeds to train the model using 

the training dataset. During training, the model learns 

to recognize patterns and spectral signatures 

associated with different gas emissions. Training 

involves multiple iterations (epochs) where the 

model's parameters are adjusted to minimize 

prediction errors. 

vi) Algorithms: 

CNN (Convolutional Neural Network)- 

Convolutional Neural Networks (CNNs) are a class 

of deep neural networks specifically designed for 

processing structured grid data, such as images. In the 

context of this project, CNNs play a pivotal role in 

hyperspectral image analysis. They consist of layers 

that learn hierarchical representations through 

convolutional filters, capturing spatial patterns in the 

input data. The filters enable feature extraction, 

allowing the model to identify complex patterns and 

relationships within hyperspectral images. CNNs are 

adept at recognizing spatial structures, making them 

well-suited for detecting intricate patterns associated 

with industrial gas emissions in hyperspectral data.  

A 3D-CNN is a variant of convolutional neural 

network that operates in three dimensions, typically 

used for processing 3D data or volumetric data such 

as video sequences, medical scans, and hyperspectral 

images. In this project, a 3D-CNN is likely used to 

process the hyperspectral data, taking into account 

the spectral dimension (wavelength bands), as well as 

the spatial dimensions (width and height) of the 

image. This allows the model to capture both spectral 

and spatial features, which is crucial for hyperspectral 

image analysis. 

 

Fig 3 CNN 

CNN + BiGRU (Ensemble Model)- The project 

involves the integration of an ensemble model, 

CNN+BiGRU, combining Convolutional Neural 

Network (CNN) and Bidirectional Gated Recurrent 

Unit (BiGRU). This ensemble approach aims to 

leverage the strengths of both architectures. While 

CNNs excel in capturing spatial features, BiGRUs are 

proficient in handling temporal dependencies. 

Bidirectional GRUs process data in both forward and 

backward directions, enhancing the model's ability to 

understand temporal sequences. By combining the 

spatial understanding of CNNs with the temporal 

context captured by BiGRUs, the ensemble model 

achieves superior performance, resulting in 100% 
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accuracy. This comprehensive approach ensures 

robust gas detection in hyperspectral images by 

considering both spatial and temporal aspects of the 

data. 

The CNN + BiGRU combination integrates CNN for 

spatial features and BiGRU for temporal and spectral 

dependencies, leveraging both architectures to 

effectively process hyperspectral data, enhancing gas 

detection, and addressing the spatial and spectral 

information requirements of the task. 

 

Fig 4 CNN + BiGRU 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

 

Fig 5 Precision comparison graph 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

 

 

Fig 6  Recall comparison graph 

Accuracy: Accuracy is the proportion of correct 

predictions in a classification task, measuring the 

overall correctness of a model's predictions. 



RB Journal of Lib & Information Science ISSN: 0972-2750 

(UGC Care Group I Listed Journal) Vol-14 Issue-02 No.01: 2024 

 

Copyright @ 2024 Author                                                                                          Page | 9 

 

 

Fig 7 Accuracy graph 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall, offering a balanced measure that 

considers both false positives and false negatives, 

making it suitable for imbalanced datasets. 

 

 

Fig 8 F1Score 

 

Fig 9 Performance Evaluation table 

 

Fig 10 Home page 

 

Fig 11 Registration page 
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Fig 12 Login page 

 

Fig 13 Input sheet 

 

Fig 14 User input 

 

Fig 15 Predict result for given input 

5. CONCLUSION 

The project is dedicated to addressing environmental 

pollution by identifying gas emissions from industrial 

sectors. This is crucial for environmental protection, 

as industrial emissions contribute significantly to air 

pollution and global warming. Hyperspectral images 
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captured from industrial gas leakages serve as the 

primary data source. The Spectral Angle Mapper 

(SAM) distance formula is employed for gas 

detection. SAM measures the spectral similarity 

between the captured hyperspectral images and 

known gas signatures, enabling accurate 

identification of gas emissions. The project creates its 

gas label dataset, demonstrating a proactive approach 

to data collection [13]. Additionally, external datasets 

containing methane and sulfur leak information are 

utilized for training purposes. This combination 

ensures a comprehensive and diverse dataset for 

effective model training. The project showcases the 

efficacy of deep learning techniques in gas detection 

and environmental protection. Deep learning enables 

the model to automatically learn intricate patterns and 

features from hyperspectral data, contributing to 

improved accuracy in identifying harmful gas 

emissions. This project introduces a hybrid model, 

CNN+BiGRU [25,26,27], which achieves a 

remarkable 100% accuracy. This hybrid approach 

combines Convolutional Neural Network (CNN) and 

Bidirectional Gated Recurrent Unit (BiGRU), 

showcasing superior performance and robustness. 

This makes it a highly effective solution for various 

e-commerce data analysis tasks, illustrating the 

versatility of the model beyond its primary 

environmental application. The integration of a user-

friendly Flask interface, coupled with secure 

authentication, enhances the overall user experience 

during system testing. This interface simplifies data 

input for evaluating system performance. The 

emphasis on user-friendliness and security 

underscores the project's commitment to practical 

usability and data protection. 

6. FUTURE SCOPE 

The model's adjustability to varying gases by 

modifying parameters ensures its versatility for 

diverse gas detection tasks. By exploring diverse 

distance metrics and optimization methods, the 

algorithm aims to improve both accuracy and 

efficiency in gas detection. Adapting the model for 

industrial, environmental, and security contexts 

ensures practical, real-world utility. [3,10] Extending 

the model to identify multiple gases at once enhances 

its ability to monitor complex gas mixtures in the 

environment. Incorporating the model into aerial 

vehicles enables efficient remote sensing, extending 

its use to diverse applications requiring gas detection 

from the air. 
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